GENE EXPRESSION DATA CLASSIFICATION COMBINING HIERARCHICAL REPRESENTATION AND EFFICIENT FEATURE SELECTION

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Feature Selection in Tumor Classification Using Microarray Gene Expression Data

Feature selection is the process of choosing a subset of the original predictive variables through the elimination of redundant and uninformative representatives. An example of importance is the analysis of gene expression data from DNA microarray hybridization experiments. The data obtained from the experiments usually contain a few samples each with expression levels of a large number of gene...

متن کامل

Feature Selection for Cancer Classification Using Microarray Gene Expression Data

The DNA microarray technology enables us to measure the expression levels of thousands of genes simultaneously, providing great chance for cancer diagnosis and prognosis. The number of genes often exceeds tens of thousands, whereas the number of subjects available is often no more than a hundred. Therefore, it is necessary and important to perform gene selection for classification purpose. A go...

متن کامل

Feature Selection for Classification of Gene Expression Data

This paper presents a gene selection method for classification of gene expression data. First, a fFeature selection techniques based on t-test statistic is used applied in order to select the n topranked significant genes. Then, a combination of Genetic Algorithm (GA) and /Support Vector Machines (SVM) is used to further select significant genes to the resulting set of genes obtained from t-tes...

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biological Systems

سال: 2012

ISSN: 0218-3390,1793-6470

DOI: 10.1142/s0218339012400025